Grandi novità in arrivo!

Mega ciao!
Come state?
Tenetevi forte perchè domani arriverà una novità astronomica 🙂 Sono già super esaltata!
Collegatevi tutti domani 😉
A presto!

Sara

SOLUZIONE ASTROQUIZ 10

Mega ciao!
SOLUZIONE ASTROQUIZ 10
Vi avevo chiesto se in un sistema planetario l’acqua si può trovare solo all’interno della fascia di abitabilità. La risposta è: NO. La fascia di abitabilità è quella regione di un sistema planetario in cui le temperature sono tali da permettere la presenza di acqua liquida. L’acqua però si può trovare anche al di fuori di questa fascia e la prova ci arriva dal nostro Sistema Solare. Nel nostro sistema la fascia di abitabilità si estende da poco dopo l’orbita di Venere a poco prima dell’orbita di Marte, quindi ingloba solamente la Terra. Sappiamo però che anche su Marte c’è un bel po’ d’acqua sotto forma ghiacciata ai poli e nel sottosuolo. Infatti la sonda Mars Reconnaissance Orbiter ha scoperto un deposito di ghiaccio nel sottosuolo con tanta acqua quanta ne troviamo nel lago Superiore americano. Ma non finisce qui: l’acqua è presente allo stato liquido su un paio di satelliti. Su Europa (una delle lune di Giove) e su Encelado (satellite di Saturno, nella foto sotto) sono presenti addirittura degli oceani, che si trovano sotto una crosta di ghiaccio spessa circa 20 km. Tramite le osservazioni fatte con il Telescopio Spaziale Hubble e con la sonda Cassini si è scoperto che nelle spaccature presenti nella crosta sono presenti geyser che eruttano materiale nello spazio. Si pensa che su queste due lune siano presenti sorgenti idrotermali subacquee, dove potrebbe essersi sviluppata la vita, come nelle sorgenti terrestri, sotto forma di pesciolini, molluschi, gamberetti…
Dunque sushi gratis per tutti!
A presto!

Sara

Encelado ripreso dalla sonda Cassini (Image credits: NASA)

SOLUZIONE ASTROQUIZ 9

Mega ciao!
SOLUZIONE ASTROQUIZ 9
Vi avevo chiesto che evento ha originato la prima onda gravitazionale rivelata. La risposta corretta è: la fusione di due buchi neri. Le onde gravitazionali sono perturbazioni della metrica spazio-temporale che si propagrano sotto forma di ondulatoria e sono dovute al moto di masse accelerate. Nel 2016 grazie agli osservatori LIGO e VIRGO sono state rivelate le prime onde gravitazionali, che hanno portato Kip Thorne (sempre sia lodato), Rainer Weiss e Barry Barish a vincere il Premio Nobel per la Fisica nel 2017.
La prima onda gravitazionale captata era dovuta alla fusione di due buchi neri, uno di 29 e l’altro di 36 masse solari, che ha portato alla formazione di un buco nero di 62 masse solari. Adesso vi starete chiedendo cos’ho fumato per scrivere che il buco nero finale è di 62 masse solari, dato che, facendo due conti, 29+36 fa 65. In realtà i calcoli non sono sbagliati: le tre masse solari di differenza sono state espulse dal sistema sotto forma di energia e in particolare sotto forma di onde gravitazionali.
Questo vi fa capire quanto siano energetici questi eventi. Attenzione però che l’alta energia non si traduce in un segnale così alto: pensate che l’intensità del segnale rivelato era di circa 1×10^(-21).
A presto!

Sara

SOLUZIONE ASTROQUIZ 8

Mega ciao!
Scusate il ritardo ma ero a fare l’esame di astrofisica delle alte energie.
SOLUZIONE ASTROQUIZ 8
Vi avevo chiesto quante volte l’uomo è atterratto sulla Luna. La risposta corretta è 6. L’uomo ha messo piede per la prima volta sulla superficie lunare il 20 luglio 1969, con i mitici Neil Armstrong e Buzz Aldrin. Scommetto che ricordate tutti la frase pronunciata da Neal una volta scese le scalette del modulo lunare: “That’s one small step for a man, one giant leap for mankind”. Poi sono arrivati gli astronauti dell’Apollo 12, con il mitico Pete Conrad che per provare ad Oriana Fallaci che le conversazioni non erano già tutte programmate ha scherzato tutto il tempo, lanciando battute irriverenti. Ad esempio, dato che Pete era decisamente più basso di Neil e che le l’ultimo scalino del lem si trovava circa a 90 cm dalla superficie lunare, arrivato in fondo alla scaletta ha detto: “Woopie! Sarà stato un piccolo passo per Neil, ma per me è stato lungo”. Poi è stata la volta dell’Apollo 14, che ha visto il ritorno nello spazio di Alan Shepard, il primo astronauta americano. Lui ha portato sulla Luna il materiale per costruire una mazza da golf ed è diventato il primo golfista spaziale! Nelle missioni Apollo 15 e 16 gli astronauti si sono divertiti a fare le derapate sulla Luna a bordo del rover lunare. Mentre con l’Apollo 17, l’ultima missione a portare l’uomo sulla Luna, il primo geologo ad andare nello spazio ad un certo punto ha urlato: “E’ tutto arancione qui!”. Alla NASA già si stavano chiedendo cosa si fosse fumato, quando arrivò la conferma del comandante. Quindi la Luna non è solo grigia, ci sono terreni di colori diversi!
Adesso vi starete chiedendo che fine ha fatto l’Apollo 13. La missione è famosa per la frase “Houston, abbiamo un problema!”. Circa 55 ore dopo il lancio i Jim Lovell, Fred Haise e Jack Swigert hanno sentito una forte vibrazione, hanno visto accendersi una valanga di spie di allarme e non riuscivano più a controllare la navicella. Il cap com a Houston stava impazzendo. Non si riusciva a capire cosa stesse succedendo e tutti pensavano ad un problema del computer. Ad un certo punto Jim Lovell guardò fuori dall’oblò e comunicò che l’astronave stava perdendo qualcosa nello spazio, di sicuro un gas…certamente ossigeno. Si è gelato il sangue a tutti! Sappiamo che perdere ossigeno nello spazio non è una buona cosa: l’ossigeno serve per vivere. Dopo i primi controlli è diventato chiaro che la missione non poteva più essere completata, ma si era trasformata in una missione di salvataggio. A Houston non erano sicuri di riuscire a riportare a casa i tre astronauti sani e salvi. L’astronave continuava a perdere ossigeno e c’erano perdite di energia in diversi pannelli. Non si era sicuri di avere nè l’ossigeno nè l’energia sufficiente per il ritorno sulla Terra. E’ stato solo grazie alla freddezza degli astronauti e alla cooperazione degli ingegneri della NASA che i tre sono tornati a casa. La missione Apollo 13 è definita il fallimento di maggior successo nella storia della NASA. Fallimento perchè non sono riusciti ad allunare, successo perchè sono tornati sani e salvi.
A presto!

Sara

Jim Lovell, Jack Swigert e Fred Haise, gli astronauti della missione Apollo 13

Grazie a tutti!

Mega ciao!
Grazie a tutti quelli che hanno partecipato all’evento ieri sera e grazie alla Dottoressa Alice Sella per la bellissima conferenza!
Vi aspettiamo il 7 giugno sempre a Palazzo Toaldi Capra per la conferenza “Il ruolo della spettroscopia nell’indagine sull’origine dell’universo” del Prof. Piero Rafanelli.
A presto!

Sara

Sede chiusa per conferenza

Mega ciao!
Vi ricordo che stasera (3 maggio 2019) la sede resterà chiusa. Vi aspettiamo a Palazzo Toaldi Capra a Schio alle ore 21:00 per la conferenza “Antica luce: la Luna in archeoastronomia” tenuta dalla Dottoressa Alice Sella.
A presto!

Sara

SOLUZIONE ASTROQUIZ 7

Mega ciao!
SOLUZIONE ASTROQUIZ 7
Betelgeuse è una supergigante rossa, ormai alla fine della sua vita, che si trova nella costellazione di Orione a circa 640 anni luce di distanza. La domanda era: se esplodesse oggi, quando sarebbe visibile l’esplosione? La risposta giusta è: tra 640 anni. Come mai? La luce ha una velocità finita di circa 300 mila km/s. La stella dista da noi 640 anni luce. Questo significa che andando alla velocità della luce un oggetto ci metterebbe 640 anni per coprire la distanza tra la Terra e Betelgeuse. Dunque quando la stella esploderà la luce dell’esplosione ci metterà 640 per arrivare fino a noi.
Se invece il Sole diventasse improvvisamente più luminoso ce ne accorgeremmo subito? La risposta è no. Il Sole dista da noi 8 minuti luce, quindi riusciremmo a vedere gli effetti del cambiamento con 8 minuti di ritardo.
A presto!

Sara

La costellazione di Orione (Image credits: APOD)

Dove nascono gli elementi?

Mega ciao!
Scommetto che tutti almeno una volta nella vostra vita avete dato un’occhiata alla tavola periodica degli elementi. Ma da dove arrivano questi elementi? Sappiamo che alcuni si sono formati direttamente durante il Big Bang, circa 14 miliardi di anni fa. Questi sono l’idrogeno, l’elio e un po’ di litio. L’idrogeno è poi andato a formare la prima generazione di stelle, dalla cui evoluzione si sono formati elementi più pesanti che, al termine della vita di queste stelle, sono andati ad arricchire il mezzo interstellare. Dalle nuove nebulose, ricche di metalli (attenzione che per noi astronomi i metalli sono tutti gli elementi più pesanti di idrogeno ed elio), si è formata la seconda generazione di stelle e così via fino ad arrivare ai giorni nostri. Dall’evoluzione stellare sappiamo però che i processi di fusione nucleare all’interno delle stelle non possono andare avanti all’infinito e si fermano quando il nucleo è composto da ferro e nichel. A questo punto la stella esplode in una supernova ed il suo nucleo va a formare una stella di neutroni o un buco nero. Perchè all’interno delle stelle non si riescono a produrre elementi più pesanti? Il motivo è semplice: la natura favorisce i processi esotermici, cioè che producono energia. Creare elementi più pesanti del ferro tramite reazioni nucleari sarebbe un processo endotermico, cioè che richiede energia per potersi verificare, quindi in natura non può avvenire spontaneamente. Ma allora come si sono formati gli elementi più pesanti come l’oro, l’argento ed il platino? La risposta a questa domanda è arrivata nel 2017, con il rilevamento di un evento straordinario: l’emissione di un’onda gravitazionale diversa da quelle scoperte in precedenza. Fino a quel momento le onde gravitazionali captate derivavano dalla fusione (merging) di due buchi neri. La nuova onda gravitazionale è stata prodotta dalla fusione di due stelle di neutroni. Dopo la fusione il sistema è esploso in una ipernova. Grazie allo studio di dati provenienti da radiotelescopi, osservatori di onde gravitazionali, telescopi ottici, osservatori X ed osservatori di raggi gamma è stato possibile scoprire l’esatta origine del segnale: un puntino luminoso apparso nella galassia lenticolare NGC 4993, situata a circa 130 milioni di anni luce di distanza. Inoltre si è scoperto che è proprio dalla fusione di due stelle di neutroni che si originano gli elementi più pesanti. Con questa scoperta è cominciata l’era dell’astronomia multi messaggio. E’ straordinario capire come, combinando dati provenienti da osservazioni in bande spettrali completamente diverse, si possano raggiungere le scoperte più spettacolari!
A presto!

Sara

NGC 4993 e la sua ipernova (Image credits: NASA)

Dischi di accrescimento

Mega ciao!
Come facciamo a capire se in un sistema è presente un disco di accrescimento? Uno dei metodi è analizzare le variabili cataclismiche e le binarie X di piccola massa, che sono sistemi binari in cui una delle due componenti è compatta. In particolare abbiamo che nelle variabili cataclismiche la stella compatta è una nana bianca. Si nota che questi sistemi presentano forti righe di emissione di idrogeno ed elio, che subiscono redshift e blueshift periodici, caratteristica del fatto che è presente un disco di accrescimento rotante. In più queste righe presentano un doppio picco, che può essere usato per calcolare la velocità circolare proiettata del disco. Se il sistema binario è ad eclisse le righe perderanno il picco blu all’inizio dell’eclisse, per poi recuperarlo gradualmente e perdere l’ala rossa verso la fine dell’evento. Questo indica la presenza di un disco di accrescimento che ruota attorno alla primaria nello stesso verso della secondaria.
A presto!

Sara

Rappresentazione artistica di una variabile cataclismica (Image credits: ESA)

Stelle cannibali: quando una stella se ne mangia un’altra

Mega ciao!
La maggior parte delle stelle si trovano in sistemi binari, cioè legate gravitazionalmente ad altre stelle. La cosa interessante è che molti di questi sistemi ad un certo punto della loro evoluzione vanno incontro al fenomeno del trasferimento di massa, in cui la stella primaria si mangia parte del materiale della secondaria. Questo può avvenire in due modi:
– una delle due stelle ad un certo punto si espande (diventa una gigante) o la separazione delle due stelle diminuisce per perdita di momento angolare. A questo punto l’inviluppo della secondaria si trova abbastanza vicino alla primaria da esserne attratto gravitazionalmente, quindi cade nella buca di potenziale della primaria. Però il materiale non può cadere direttamente nella stella. Prima deve perdere momento angolare, quindi si dispone attorno alla primaria in una struttura chiamata disco di accrescimento. Questo tipo di trasferimento di massa è detto trasferimento tramite il lobo di Roche.
– una delle due stelle durante la sua evoluzione perde massa tramite vento stellare. Il gas perso può essere catturato dall’attrazione gravitazionale della primaria /accrescimento tramite il vento stellare).
A presto!

Sara

Rappresentazione artistica di un sistema binario (Image credits: NASA)